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MULTI-LEVEL BANDWIDTH EFFICIENT

BLOCK MODULATION CODES

ABSTRACT

In this paper, we investigate the multi-levd technique for combining block

coding and modulation. The paper consists of four parts. In the first part,

we present a formulation for signal sets on which modulation codes are to be

constructed. Distance measures on a signal set are defined and their properties

are developed. In the second part, we present a general formulation for multi-

level mod_ation codes in terms of component codes with appropiate Euclidean

distances. The distance properties, Euclidean weight distribution and linear

structure of multidevd modulation codes are investigated. In the third part,

several specific methods for constructing multi-level block modulation codes with

interdependency among component codes are proposed. Given a multi-level

block modulation code C with no interdependency among the binary component

codes, the proposed methods give a multi-level block modulation code C _ which

has the same rate as C, a minimum squared Euclidean distance not less than

that of code C, a trellis diagram with the same number of states as that of C and

a smaller number of nearest neighbor codewords than that of C. In the last part,

error performance of block modulation codes is analyzed for an AWGN channel

based on soft-decision maximum likelihood decoding. Error probabilities of some

specific codes are evaluated based on their Euclidean weight distributions and

simulation results.



1. Introduction

One of the dramatic developments in bandwidth-efficient communications over the past few

years is the introduction and rapid application of combined coding and bandwidth-efficient

modulation, known as coded modulation, for reliable data transmission [1]. The basic con-

cept of coded modulation is to encode information symbols onto an expanded channel signal

set (relative to that needed for uncoded modulation). The channel signal set expansion pro-

rides the needed redundancy for error control without increasing bandwidth requirements,

while coding is used to produce a certain interdependency between successive channel signals,

such that only certain sequences of channel signals axe permitted. Using properly designed

coded modulation, significant coding gains over uncoded modulation schemes can be achieved

without compromising bandwidth efficiency [1].

Based on code structure, there axe two basic types of coded modulations: the trellis

coded modulation (TCM) and the block coded modulation (BCM). TCM was first introduced

by Ungerboeck in 1982 [1]. Since the publication of Ungerboeck's paper, there has been a

great deal of research on the construction of TCM codes [2-16]. In this paper, we focus on

BCM. Paxticulaxly, we investigate the powerful multi-level technique [17-26] for combining

block coding and modulation. This multi-level technique allows us to construct bandwidth-

efficient block modulation codes with arbitrary large minimum squared Euclidean distances

from Hamming distance component codes (binary or nonbinaxy) in conjunction with proper

signal mapping.

The presentation of this paper is organized as follows. In Section 2, we present a formu-

lation for signal sets on which modulation codes are to be constructed. Each signal point is

labeled by a string of symbols from a certain finite alphabet, say {0, 1}. Distance measures

on a signal set are defined and their properties are developed. In Section 3, we provide a

general formulation for multi-level modulation codes in terms of component codes over sub-

strings of labeling symbols. Lower bounds on the minimum (squared Euclidean) distance of

multi-hvel modulation codes are derived, and a sufficient condition under which the lower

bounds give the exact minimum distance is given. In Section 4, linear multi-level modulation
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codes are introduced and their weight structures are discussed. In Section S, several specific

methods for constructing multi-level block modulation codes are proposed. Most of the known

block modulation codes are basic multi-level codes constructed from binary block component

codes with no interdependency among them. One problem with the basic multi-level block

modulation codes is the large number of nearest neighbor codewords (or path multiplicity) in

comparison to TCM codes of the same complexity. To solve this problem, interdependency

between consecutive levels of labeling of component codes must be taken into account. In

Section 5, several methods for constructing modulation codes over two to four levels of a

binary labeling are proposed. These proposed construction methods provide interdependency

among component codes. Given a basic multi-level block modulation code C, the proposed

methods give a nonbasic multi-level block modulation code C' which has the same rate as C, a

minimum squared Euclidean distance not less than that of C, a trellis diagram with the same

number of states as that of C and a smaller number of nearest neighbor codewords than that

of C. In Section 6, error performance of block modulation codes is analyzed for an AWGN

channel based on a soft-decision maximum likelihood decoding. Error probabilities of some

multi-level block codes for 8-PSK,16-PSK and 16-QASK modulations are evaluated based on

their Euclidean weight distributions and simulation results. These codes are shown to provide

significant coding gains over some uncoded reference modulation schemes with Little or no

bandwidth expansion. Most of these codes have simple trellis structure, and hence can be

decoded with the soft-decision Viterbi decoding algorithm.

2. Signal Sets, Labeling and Distance Measures

In this section, we present a formulation for signal sets on which modulation codes are to be

constructed. Each signal point is labeled by a string of symbols from a certain finite alphabet.

Distance measures on a signal set are defined and their properties are developed.

Let S be a finite set on which a distance measure between two elements, s and s', denoted

d(s, s'), is defined and satisfies the following conditions:

d(,,8') = d(s',,) > 0, (2.1)

d(8, s') = 0 if and only if 8 = 8'. (2.2)
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This set S (or its product) represents a set of elementary signal points (e.g., an MPSK signal

set), and the distance measure d(s, s') denotes the distance measure between two signal points

represented by s and s' respectively (e.g., the squared Euclidean distance between two signal

points). The error performance of a modulation code over S is evaluated based on this distance

measure.

For most signal sets, the following condition (S1) holds •

(S 1) S is chosen as either an additive abelian group ._ or a finite subset of S, and the distance

measure on S is the restriction to S of a distance measure d on ._ such that for any two

elements, s and s', in S,

j(s,s') = a(,- s',0), (2.s)

where 0 denotes the zero element of the group ,_ and "-" denotes the inverse operation

of the group addition.

Almost all the coded modulation techniques which have been studied so far are based

on bits-to-signal point mapping through signal set partitioning introduced by Ungerboeck

[1]. Many authors [1,11-16,18-21,25] have considered the problem of partitioning a signal

constellation and labeling the parts (signal points) by strings of symbols from a certain finite

alphabet, mostly the binary alphabet {0, 1}. The common point to all these labelings is

that if two strings ala2"" at and a_a_.., a_ differ for the first time at the position i, then the

corresponding signal points are at a distance at least di apaxt. In this paper, we also follow

this idea. For a positive integer e, we shall only consider a labeling whose set of label strings

is of the following form:

= ala2...at'aiELi for l<i<t , (2.4)

where Li is a finite set of two or more symbols from the label alphabet for 1 < i < L Let A

denote the one-to-one mapping from L to S defined by a labeling. Hence each signal point

in S is uniquely represented by a label string in L. The labeling L is said to have t levels or

length L For S and A, the i-th distance parameter di of S with 1 < i < l is defined as follows

[Is]:

(1)

da_-mln{d(s,s') : s,s'ES and s_s'}. (2.5)
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(2) For 1 < i < t,

s_s',a 3ELJ,a_EL_for l<j<t,

' for l<j< i}.and a_ = %

From the definition of d,, we see that for 1 _< i < t,

(2.6)

d_< d,+_. (2.7)

For a 2t-ary QASK signal set, S is chosen as a subset of 2 t points from a 2-dimensional

lattice. The distance d(s, s') between two elements, s and s', in S is chosen to be the squared

Euclidean distance between signal points represented by s and s' respectively. A binary

labeling L of length t is chosen in such a way [1, 3] that for 1 < i _< £,

d/-- 2d/_ I. (2.8)

Such a set S with the labeling L is denoted S_t.qASK.

For some signal sets satisfying condition (S1), the following condition ($2) also holds:

($2) We can choose t subsets, BI, B_,..., Bt of S which have the following properties:

(1) For1< i < t, IB,I_>2, where IXldenotes the number of elements in a set X.

(2) S is the direct-sum of BI, B2,..., Bt, denoted B1 + B_ + ... + Bt, i.e., for each

element s in S, there are unique b_ E B, for 1 < i < t such that

s = bl + b2... + bt. (2.9)

(3) Forl_<i<t, bEBiandb'EBi,

d(b,b')=min{d(b+c,b'+c'):candc'in B,+l+ B_+2+...+ Bt}. (2.10)

For such a signal set, we will use the following labeling. For 1 < i < t, choose a set Li of [Bi[

symbols and a one-to-one mapping _ from Li to Bh and define the mapping A as follows: For

a, 6 L_ with 1 < i < t,

_(_2...,,t) _A_,(_) + _(_) + ... + h(at). (2.10
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A set S with the above labeling for which conditions (S1) and ($2) hold is said to be of direct-

sum type. It follows from (2.3), (2.5), (2.6), (2.9) to (2.11) that the i-th distance parameter

of Sis

d, = d[Bi], (2.12)

where d[X] denotes the minimum distance between different elements in a subset X of ,_. The

subsets, B1, B2," ", Bt axe said to form a composition of the set S.

For a 2t-ary PSK signal set, the integer group {0, 1, 2,..., 2 t - 1} under the modulo-2 t

addition is chosen as the set S (i.e., S = S). Each element in S represents a point in the

2-dimensional 2t-ary PSK signal set. The distance measure d(s, s') between the two elements,

s and s_, in S is chosen to be the squared Euclidean distance between two signal points

represented by s and s' respectively, and is given by

d(s,s')= 4sin2(2-', (s- s')) ¢2.1s)

For 1 < i < l, we choose

Bi = {0, T-I}- (2.14)

Then S is the direct-sum of BI, B2,..., Bt and the right-hand side of (2.9) is simply the

standaxd binary representation of the integer s. In this case, B1, B2,'", Bt are s_id to form a

basic composition of S. It is easy to check that the condition of (2.10) holds. We use a binary

labeling for S with Li = {0, 1}, )_i(0) = 0 and A_(1) = T -1 for 1 <_ i _< t. Then each signal

point in S is labeled by a sequence of _ binary digits. It follows from (2.12) to (2.14) that the

i-th distance parameter of S is

di = 4sin a (2i-l-tlr), (2.15)

for 1 < i < £. From (2.15), we readily see that

dt = 2dt-a. (2.16)

The above set S with distance measure given by (2.13) is denoted S2¢PSK. As a_other example

of direct-sum type, let ,_ be the set of all integers which is an additive abelian group. For

1 < i < t, let B, = {-2 i-1, T-t}. Define S as follows:

S _ {b,+b_+"'+bt : biEB, for 1<i</}

-_ {- e+ + s,e-
= Ba+B2+...+Bt.



For s and s' in S, define the distance measure d(s, s') on ,_ as (s - s') 2. Then it is easy to

show that the property of (2.10) holds and d/= 22_. The product, S _ = {(s, s') : s,s' E S},

may be used to represent a set of signal points for some modulation (a special case is used in

[25]). The construction of a code of length n over the signal set S 2 is that of a code of length

2n over S.

Since the distance measure on S2cq^sK or S_cpsK is not simple enough to be used effec-

tively for constructing codes for 2t-QASK or 2t-PSK modulation, a simpler working distance

measure is usually taken. If a multi-stage decoding algorithm is used for multi-level modula-

tion codes, an appropriate working distance measure may be more useful than d itself. Such

a working distance measure, denoted g(.,-), is a real function on S x S which satisfies (2.1),

(2.2) and the following condition: for s and d in S,

d(s,s') > g(s,s'). (2.1"0

Most modulation codes [1,3,15,17-19] are basically constructed based on the following distance

measure d(.,-). For s = A(alaa...at) and s' = )_(a'la'2...a't) in S, let d(s,s') be defined as

follows:

(1) If s = s', then

_(s,s')_ o. (2.18)

(2) Otherwise,

d(s,s') _= dh, (2.19)

where h denotes the first sufftx such that ah # a_,.

It follows from the definitions of di and d(s, s') that for any two elements, s and s', in S,

d(s,s') >__t(s,s'). (2.20)

Other examples of working distance measures are the Euclidean weight [1] (see Section 4) and

the Hamming distance with proportionality in [20].

Let L be the label set for the signal set S. We define the distance measure between two

strings in L as follows : For a distance measure g on S and two strings a and a' in L, let

gz.(a, cd) be defined as

gt,(,_,o')_ g(_(_,),_(_')). 0.21)
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Notation S will be used as a more generic notation than L. For a positive integer n, let

X" denote the set of all n-tuples over a set X. Let g(.,-) be a measure, a real function,

defined on X _ (e.g. d(.,-) or d(., .)). We extend the domain of 9 as follows: For two n-tuples,

' . v'J overX,= (vl, v_,..., v,) and ¢ = (v[, %.. ,

Ill

¢) (2.22)
j=l

For a nonempty subset C of X", define the minimum distance of C with respect to measure

9(','), denoted D[.q, C], as follows:

Db, Cla--min{9(_,,¢) : ,_,¢eC and _'¢¢}. (2.23)

(If IcI = 1,then D[.q,C] is defined as infinity.) For two real functions, 9(', ") and 9'(', ") defined

on X 2 and a nonempty subset C of X", it follows from (2.22) and (2.23) that if g(., .) > g'(-, "),

then

D[9, C] > D[9', C]. (2.24)

We use D[C] and D__[C] to denote D[d, C l and D[_d, C] respectively for simplicity. It follows

from (2.20) and (2.24) that

D[C] > 12[C]. (2.25)

Let C be a block code of length n over S (or L) which represents either the 2t-PSK or the

2CQASK signal set. If each component of codeword _" in C is mapped into the corresponding

signal point in the 2-dimensional 2t-PSK or 2t-QASK signal set, we obtain a block 2t-PSK

or 2t-QASK modulation code with minimum squared Euclidean distance D[C]. The effective

rate of this code is given by [1],
1

R[C] = _los 2 ICI, (2.26)

which is simply the average number of information bits transmitted by C per dimension.

3. Multi-level Block Modulation Code

The multi-level technique is a powerful method for constructing modulation codes with atbi-

traxy large minimum squared Euclidean distance from component codes in conjunction with

propel signal mapping. In this section, we present a general formulation for multi-level block
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modulation codes in terms of component codes over substrings of labeling symbols. Lower

bounds on the minimum distance of a multi-level code based on a distance measure gL over a

labeling L are derived.

Suppose a signal set S and a labeling L of t levels for S are given. Since the mapping

from L to S is one-to-one, constructing a code over S is equivalent to constructing a code

over L. For constructing a general multi-level code over L, we must segment the labeling into

sub-labeling and choose the starting symbol position of each sub-labeling. Let m be a positive

integer not greater than l, and let jl,j2,... ,j,,÷l be m + l integers such that

l=j1<j_<"'<j,.<j,.+l=f+l. (3.1)

For 1 < i < m, let _i) be defined as

= ji+l - ji,

and let L (0 denote the set of substrings from the ji-th symbol to the (ji+l - 1)-th symbol of

strings in L defined by (2.4), i.e.,

L (') _= ( aj,aj,+v..a,_.,-1 " as • Lh for j, _( h < j,+l). (3.2)

Clearly,

L = L (1)* L (2)*---* L ('_),

where • denotes the concatenation operation. For 1 __ i (_ m, L (0 is called the i-th level

sub-labeling.

Consider an n-tuple "7 = (vl, v2,..., v,) over L. For 1 ___j _( n, the j-th component vj of

# can be expressed as the following concatenation of substrings in L 0) to L (') :

v i = vjlvi2...vj,_

where vii E L (0 for 1 < i < m. For 1 < i < m, we form the following n-tuple over L(O:

_(0 = (vl_, v_,..., v,i). (3.3)

This n-tuple #(0 is called the i-th component n-tuple of _, and # is denoted as follows:

= #(1). #0) ...., _,,0. (3.4)
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For 1 < i _< m, let Ci be a block code of length n over L (O. From C1, C2,...,C,,, we

form a block code of length n over L as follows:

c _ {,(1>.,(a_,..., ¢,_ : ¢o _ c, for 1<i<m }. (3.s)

Such a code is called a g-level code with m components. We denote C with C, * Ca *-" * C,,

and Ci is called the i-th component code of C.

For a distance measure 91.on L and 1 < i < m, let g_)(w, w') with w and w' in L(0 be

defined as follows:

= min
I I Igdwl... _,-lWW,+i...w., _, ... _,-1_ w,+_..,w') "

w, E LO) with j = 1,...,i- 1, i+ 1,...,m and

, L O) }w_ q with j = i + l,...,m. . (3.6)

For any real function gn(', ") on L x L, a lower bound on the minimum distance D[.qL, C] of a

multi-level code C based on the distance measure gz is given in Lemma 1.

Lemma 1:

where g_) is defined by (3.6).

(2.21).

(') (3.7)D[gL, C] >_ w.in D[gL ,C,],
1<i<,,

The equality holds for gn = d__ defined by (2.18),(2.19) and

Proof." See Appendix A. AA

This lemma unifies the previous results [17, 18, 21, 25, 27, for g - d_t, 20, for the Hamming

distance with proportionality]. From (2.17) and (2.24), Lemma 1 gives the following lower

bound on D[C] (= D[d, C]),

DtC] > rain D[.q(_), C,].
-- 1<i_<m

Now we consider a special case for which m = t and gL = d-z.

component codes. Let 6i be the minimum H_aming distance of Ci.

(2.18) to (2.20) and (3.6) that for two different symbols a and a' in L_,

(3.8)

C is formed from t

Then it follows from

t_r_)(a/, a_) = d, (3.9)
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for 1 < i <:I. From (2.23) and (3.9),we have

c,]= (3.10)

Combining (2.25),(3.8) and (3.10),we obtain the followinglower bound on D[C] [18,27, 28]:

D[C] )" nfin 5,d.. (3.11)
- l_<__<t

The above speciM case was first proposed by Imai and Hirakawa [17] and then by Ginzburg [18]

and Sayegh [19]. A t-level code with t components is called a basic multi-level code. Most of

the known block modulation codes ate basic multi-level codes. A basic multi-level modulation

code is constructed from t Hamming distance component codes with no interdependency

among them. Simple methods for constructing basic multi-level block codes for various types

of modulations are given in [18,19,23-25,29].

For s signM set S of direct-sum type, we hsve stronger results on the minimum distance

of a multi-level code which _e given in Lemms 2.

Lemma 2: Suppose that S is of direct-sum type.

(1) If _') -- 1, then for a and d in L(O( - L,,),

a_)(a,a')= d(A,,(a),A,,(d)). (3.12)

(2) For a and a' in L (m),

d(L"O(a,a')= d(A("O(a),A("_)(a_)), (3.13)

where, for a_.aj.+1...at in L(')

A('_)(a_.a3.+1•"at) _- A#.(a#.) + Aj.+1(aj.+x) +'-" + At(at).

(3) Ift_i)= I for every i other than rn, then

D[C] - rain D[d(_ ), Ci], (3.14)
]<i_<m

rain (3.13)

where w denotes the Euclidean weight defined by (4.4)in the next section.

(4) If rn -- t and [Bi[(= [L, D - 2 for 1 < i < £, then

D[C l -- min 5,di, (3.16)

where _i denotes the minimum Hamming distance of Ci.
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o



Proof: See Appendix A. AA

In general, a symbol in Li does not denote a single signal point but a family of subsets

of signal points. For a signal set S of direct-sum type, a t-level block modulation code C over

S (instead of L) can be defined as the following sum of rn component codes, C1, C_,--., C,_:

C =_ Cl+c_+.-.+C_,

{_1) +_(_)+... +,70,0.9(0 6C, for 1 < i < m}, (3.17)

where the i-th component code C, has symbols from Bj, + Bi.+1 +... + Bj,+I-, C_ S and "+"

denotes the component wise "+" addition. If the assumption in (3) of Lemma 2 is satisfied,

then

D[cl+ c2+...+ cm]= rainD[C,]. (3.1S)

When a signalset S and a labelingL of length I for S are given together,itis desirable

for the labeling to display the detail distance structure of S as much as possible. However

in the construction of multi-level codes, choosing the number of components, m, less than t

may results in a code with better performance than a basic £-level code. This will be shown

in Section 5.

For a block modulation code to be decoded with a soft-decision maximum likelihood

decoding algorithm, it is desirable that the code has a trellis structure so that the Viterbi

algorithm can be applied. A multi-level code has trellis structure if each of its component codes

has trellis structure. A trellis diagram for the multi-level code C can be obtained by taking the

direct product of trellis diagrams for its component codes. To reduce the decoding complexity,

multi-level modulation codes can be decoded with a multi-stage decoding [17, 20, 25].

4. Linear Multi-level Codes

In this section we study multi-level codes with linear structure. Linear structure makes the

error performance analysis of a code much easier.

Suppose the signal set S can be taken as an additive abelian group under addition +,.

For a distance measure g on S and an n-tuple _ over S, define 19[g as follows:

ivl, O), (4.s)
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where 0 denotes the all-zero n-tuple over S. The parameter I¢[g is called the weight of 9 with

respect to the measure g.

A block code C over S is said to be linear with respect to +o, if C is closed under

the component-wise addition +,. Suppose that a distance measure (or a working distance

measure) g on S satisfies the following condition: For s and s' in S,

g(_,s') - 9(_-. _',o), (4.2)

where -. denotes the inverse of +. and 0 is the zero element in S with respect to +o. Then

it follows from (2.22), (2.23), (4.1) and (4.2) that for a [inea_ block code C over S,

D[.q,c1= rain{ I_1,,: ';"e c - {0} }. (4.3)

As a result, the error performance evaluation of C with respect to the distance measure 9 is

reduced to that of C in terms of the weight measure I " Ig.

For the sake of simplicity, we assume that the label L is the set of all binary strings of

length L Then S can be taken as a binary vector space of dimension I in the following sense.

For two elements s and s' in S labeled with ala_ ... at and al, as...t at, respectively, define s E_s'

as the element labeled with the binary string of length £ whose i-th symbol is the modulo-2

sum of ai and a_ for 1 < i < L Note that d(s, s') is not necessarily equal to d(s E_ s', 0) (e.g.,

S_t.PSK with l >_ 3). However, the distance measure _J(-, .) defined by (2.18) and (2.19) does

satisfy the condition of (4.2) with respect to EL The tightest measure satisfying (4.2) with

respect to _, denoted to, is given by

=(,,s') min{a(t,t'):t,t' Sandt =s (4.4)

[. [,_ is the Euclidean weight measure first described in [1]. For example, consider S&PSK "-

{0, 1,..., 7}. For this case, Isl. - Isl_ for s # 5 and 151.= d3- dl > 151_- dl, where dl, d2

and d_ axe defined by (2.15).

Most of known block modulation codes ate linear with respect to E_.

For # = (_ (ult vxz. • • vlt), :_(v21 v_... vat ), • •., ),(v_l v,,2 • • •v,a)) E S _, let/3(9) denote the fol-

lowing binary nl-tuple:

_(_') --" (VII, VI2, • •., lPlL, tP_ll, V_,..., t/U,... , Yes1, lP_2, • • •, Vstl).

- 13-



For a block code C of length n over S, we form the following binary block code/3[C] of length

rd:

{ : c }. (4.5)

If and only if/3[C] is linear, C is linear with respect to _. For a linear block code C over S,

the number of information bits, called the dimension, of C is defined to be that of/3[C]. Let

/3 -1 denote the inverse mapping of/3. The dual code of C, denoted C "L, is defined as

C _ _ _,Ls[c]_], (4.6)

where _C] "Ldenotes the dual code [30] of ]3[(7].

If a code C over S is linear with respect to _, then the complete weight distribution [31] of

C over S is useful for evaluating the error performance of C. For an n-tuple _" = (vl, v_, ..., v,,)

over S, the composition of ¢, denoted comp(e¢), is a 2t-tuple,

= (to, tl,...,t2'-l),

where ti is the number of components in # equal to the binary string ala2."at such that
t

%2 J-1 = i. Let N¢(t,) denote the number of codewords _ in C with comp(v) = t,. Let
j=l

T_,_p be the set

Tco,_p = {(t0, tl,...,t_,__) : 0 <: t, <_ n with 0 _< i < 2t}.

Then

{Nc(t) : t E Tc,,,_v}

is the complete weight distribution of C. For a distance measure g and a nonnegative real

number 6, let Ng(6) or Ng,c(6) denote the number of codewords 9 in C such that [vlg = 6.

Ng(6) is used to evaluate the error performance of C (see Sec. 6). Once the complete weight

distribution is known, Ng(/_) can be computed. If C is linear and log s ICI is moderate, then

the complete weight distribution of C can be computed simply by generating all codewords of

C. If rd - log s ICI is moderate, the complete weight distribution of C can be computed from

that of the dual code C J" of C defined by (4.6) [31, 32].
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5. Component Code Construction

In section 3, we presented a general formulation for multi-level modulation codes in terms of

component codes over substrings of labeling symbols. Suppose a signal set S and its labeling

L of length t are given. To form a t-level modulation code over S with m components, we

must first construct the component codes with proper minimum distances based on a distance

measure gL. For 1 _ i <__m, the i-th component is constructed based only on the i-th level

sub-labeling L (0 of length _) and the distance measure g(_). Once the component codes are

constructed, they are combined to form a Llevel modulation code by concatenating the m

sub-labeling strings at each component position and then replacing each labeling string by its

corresponding signal point in S. The simplest case is to construct basic l-level modulation

codes with rn = f. One problem with basic multi-level block modulation codes over S is

their large number of nearest neighbor codewords (path multiplicity), in comparison to trellis

modulation codes, e.g., Ungerboeck codes [1], of the same complexity. To solve this problem,

interrelation between consecutive levels of given labeling must be taken into account. In this

section, we present several methods for constructing codes over two to four levels of a binary

labeling with interdependency between consecutive levels.

For simplicity, we omit the superfix (0, write all, d2,.., for distance parameters di,,

d_,+l,..., define L as {0, 1} t and write d, d, w for distance measures dL, ___, wL respectively.

We also define the following notations:

(1) For 1 <_ i < n, ei denotes the binary unit n-tuple whose i-th component is one and whose

other components are zero.

(2) P_ denotes the binary (n, n - 1) linear code which consists of all the even-weight binary

n-tuples.

(3) P_ denotes the dual code of P,, which consists of the all-zero and all-one n-tuples.

(4) V, denotes the vector space of all binary n-tuples.

(5) RMI,_ denotes the j-th order Reed-Muller code of length n = 2 s'. A boolean polyno-

ndal p(zl,z2,"-,zl,) represents the binary 2a-tuple whose i-th component is given by

p(il, i2,..., ih), where (il, i2,..., il,) is the standard binary representation of i - 1 with

the least significant bit is.

(6) For two j-tuples Q = (ul,u2,...,uj) and _ = (_l,_,...,vj), let rio9 denote the 2j-tuple

(ul, _,..., u_, vs,t_,... ,v j). For s binary (n,/c) linear code C with minimum Hamming

- 15-



distance 6 and an (n, k') linear subcode C' of C with minimum Hamming distance 6', let

#(C, C') be defined as

/.t(C,C')---a{fio(Oe_') : OEC and g'eC'}. (5.1)

Then D(C, C') is a (2n, k + k') linear code with minimum Hamming distance min{26, 6'}.

This p-construction is a special case of the lulu + vl construction [31, p.76] in that C' is

restricted to be a subcode of C. It is known [31] that for 0 _< j _< h,

RMh.j =#(RMh-la, RMh-aa-1), where RMh-1,-1 = {0}. (5.2)

5.1 Code Construction for the Case with t = 2 and g = d

A. Gray Code Indexing Method

This construction method [15, 20] has been proposed for the special case for which the

following condition holds:

d2= 2aa. (5.3)

For a binary 2n-tuple _" = (vl, v2,..., v2,,), define two binary n-tuples, _1(';') = (ul, u2,..., u,,)

I f
and _o2(r¢) = (u_, u2,..., u',,) as follows: For 1 __ j <_ n,

' =0;(1) If v i = vi+,, = O, then uj = uj

' =0;(2) If vj = 0 and vj+_ = 1, then uj = 1 and uj

(3) If vj = 1 and vj+. = O, then uj - u_ - 1; and

I

(4) If v3 = vj+. = 1, then uj = 0 and uj = 1.

Let _(_) denote the following n-tuple over L = {0, 1}_:

= •

(5.4)

(5.5)

(5.6)

(s.7)

(5.8)

For two binary 2n-tuples, 9 and _', it follows from the condition of (5.3) and definition of the

mapping _ that

gt(_(_), _(¢)) - I# • ¢lu" d,, (5.9)
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where Iris denote the Hamming weight of _ and @ denotes the component-wise modul(>-2

addition. Let Cb be a binary code of length 2n and minimum Hamming distance 6. Define

the following block code of length n over L = {0, 1} 2,

(5.10)

Clearly, _o[Cb] is a two-level code with two levels of interrelated labeling. If Cb is linear, we

can readily see that _[Cb] is also linear with respect to @. It follows from (5.9) and (5.10)

that

I_[Cdl = ICd, (5.11)

p_[_[cd] = 6d,. (5.12)

This construction will be used as a part of the construction presented in Section 5.2.

It follows from (5.4) to (5.7) that

(5.13)

Hence,

_(c,, c_)]= c_• c,. (5.14)

From (5.14) we see that to derive a nonbasic two-level code with the Gray code indexing

method, we need to choose Cb which cannot be constructed by the lulu + vl construction.

B. Cross-Over Construction

Now we consider the case where the distance condition of (5.3) does not hold. Let Cbl

be a binary (n, kl) linear code with minimum Hamming distance 61. Cbl may consist of only

the all-zero n-tuple. In such a case, 61 is defined to be infinite. Let Cb2 be a binary (n, k2)

linear code. Let f be a linear mapping from Cea to the set

(v. - c,:) u {o}.

For fi and ¢ in C_, f(fi i_ _') = f(fi) @ f(g'). Now we define a block code of length n over

L(={o,I}2) ., foaow,:

F(C_I,f, Cw)_ {(a • f(¢)) • • :a _ Ca and¢ _ C.}. (5.15)
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It is clear that F(Cbl,f, Cb2) contains kl + k2 information bits, and if f('_) = 0 for every _" in

Cb2, F(Cbl, f, Cb2) is simply the basic two-level code Cbl * Cb2.

Next we examine the minimum distance of F(Cbl, f, Cb2). Define the following linear

subcode of Cb2:

Cb=,o -_ {_ E Ca2: f(_') - 0}. (5.16)

Let 62,0 denote the minimum Hamming distance of Oh2,0. Define a subcode of F(Cbl, f, Oh2)

as follows:

C' a_ {(fi _ f(_,)) • v" u 6 Cbl and "_ 6 Cb_ - Cb2,O}. (5.17)

Since F(Cbl, f, Cb2) - C' = Cbl * Cb_,o, it follows from Lemma 1 and (3.10) that

,D_[F(Cb,, f, Cb_)]= min{6,d,, 6_,od2,D_[Cr]}. (51s)

Both 62,0 and D_[C'] depend on the mapping f. Define the following set of n-tuples in ({0, 1}" -

Cb,)U

f[Cb2]= {f(V): CCb2} (5.19)

Let 6_[X] denote the minimum nonzero Hamming weight of a set X of binary tuples of the

same length. Let (fi_gf(_')).9 be an n-tuple in C'. Since _ _ Cb2,0, f(9) # 0. Since f, E Cbl

and Cb_ 63 f[Cb2] = {0}, O (9 f(_) # 0. This implies the following inequality:

_O__[C1 > 6_'[Cbl • f[Cb_lld,, (5.2o)

where for subsets X and Y of {0, 1}",

XOY-_ {fi_:fiE X and _, 6 Y}. (5.21)

Since 6, _> 6_,,[C,, _ f[Cb2]], it follows from (5.18) and (5.20) that we obtain the following

lower bound on D_[F(C_,,, f, C_)]:

D [F(Cta, I, C_)] >_ rain { @,od2, 6_ [C,, (9 f[Ota]] d, }. (5.22)

Recently, Tanner [20, Theorem 3] has given a code construction method in terms of a

parity-check matrix which actually corresponds to a special case of the above construction

with:

(I) d, = 0.586 and da = 2,
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(2) c,2 is v.,

(3) f(9) = 0 for any even-weight n-tuple _ and f(9) is a fixed n-tuple ft0 for any odd-weight

n-tuple _, and

(4) _0 and Cbt generate a code with minimum Hamming distance 7.

In this case, Cb2,0 is the set of all the even-weight n-tuple with _2,0 = 2. From condition (4),

6x[Cb_ • .f[Cb2]] = T. Consequently, the right side of (5.22) is 4, i.e.,

9_IF(ebb,f,¢b2)]>_4.

In the following we present two specific cross-over constructions. Codes constructed

based on these methods have smaller numbers of nearest neighbor codewords than that of

their corresponding basic two-level codes.

B.1 Class-1 Cross-over Construction

Let C, with i = 1 or 2 be a binary (n, k_) linear code with minimum Hamming weight 5,.

Consider the basic 2-level code Ct-* Ca, denoted C. Let {ul, us,..., Q_, } be a basis of C1, a_d

let r2 denote n - ks. Suppose that kl >_ rs, 1fi,2 in = _1 and the last component of ti, 2 is zero.

Let H be a parity-check matrix of (72 whose last column is the transposition of (0, 0,..., 0, 1).

For 1 _< i _< rs, let hi be the i-th row of E. Now we define F(Cbl, f, Cbs), denoted C', such

that IC'l= ICI and __[C _] _> D_[C].

(1) Let Cbl be the (n,/cl -r2) linear subcode of C, generated by u,,+l, Q,,+2,---, Qk,-

(2) Define Cb= as V,.

(3) For binary n-tuple _, define f(9) as follows:

rl

v)a,, (5.23)
iffil

where (I_,#) is the inner product of I_.and #.

Then, f(#) = {$ifand only if# E C2, that is,Cb2,o= C3 and 5s,o= 52. Since Cb_$f[Cb_] = C_,

it followsfrom (5.22)that

D.[C t] >_ min{51dz,_ds}, (5.24)

where the equality holds if 5_ds >_ _d_. Note that If(_,,) • _lt = I_, * _l,t >- 6tds + d_. If

5_dl < 5_d_, then

<
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B.2 Class-2 Cross-over Construction

Next we consider the case where 51dl > 52d_. We restrict C1 and C_ to be constructed

by the p-construction defined by (5.1).

For an even positive integer n, let Cil be a binary (n/2, kil) linear code with minimum

Hamming distance 5i/2 or greater, and let Ci_ be an (n/2, k,2) linear subcode of C,1 with

minimum Hamming distance _i. Then p(Cil, C/z), denoted Ci, is an (n, k,1 + k,_) linear code

with minimum Hamming distance 6i.

Suppose that {rio :I < j < kit} is a basisof C,I and {tl,j :k,_- k,2 < j < k,1} is a basis

of C,2. Then the followingset of binary n-tuples is a basisof C,:

{a o o % : t < j < k. - ]_,2}u {% o 6, 6 o f_j : k. -/c,_ < j < k.}. (5.26)

Itiseasy to show that the dual code of C,, denoted Cf, isgiven by

c/- (s.2T)

Now we define F(Cbl,f, Cb2), denoted 7(C1,C2), such that [7(C,, C=)l= IV, • C=l=

2k,,+J',3+l'n+k22 and D__[3,(C1,C2)] _> min{_ld_,_2d2} = D__[C1*C2]. For simplicity, assume that

kn - k12 >_ k21 - kz2. (5.28)

Define Cbl, Cb2 and f as follows:

(1)

Cbl _- #(C_1, C,2), (5.29)

where C_1 is the hnear subcode of On generated by {_l_ :k_ - k_ < j < k_]}.

(2)

c6__ cn oc_, (5.30)

where for sets X and Y of n-tuples, X o Y __a{fi o v : u q X, _" _ Y}.

(3) Let hx, h_,..., lqh,__tn, be linearly independent n/2-tuples in C_- C_. For binary n/2-

tuples _" and _' in C_,
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Note that [(9 o go) = O if and only if both 9 and fr' are in C22. The key of this construction

is "crossing" in that f maps the left half (or the fight half) of the second component binary

n-tuple into the fight half (or the left half) of the first component binary n-tuple. The distance

and weight properties are characterized by Lemma 3.

Lemma 3:

(_)

p/_(c,,c_)] > m_n{6,d,,6_d_}.

(2) If 6_dl > 62d2 and k2, > kn, then the equality holds in (5.32) and

(5.32)

Jvd.._c,.c,)(62a_)= 2.,v_,.c,,(_)

< _Vu.c,(62)= JV$c,.c,(,S2d_). (5.33)

where Ntt, c(&) denotes the number of codewords of Hamming weight 6 in code C.

(3) If C, * C2 has a t-section trellis diagram with s states, then 7(C,, C2) has a t-section

trellis diagram with s states.

Proof: See Appendix B. AA

Example 5.1: Assume that 4d, > d2 (e.g.,SS-PSK)- Let p and q be nonnegative integerssuch

that q + 2 < p, and let CI and (72 be defined as

C, a_ RMp.,I=#(RMt,_,.,_,RMp_,.q_,),

C_ A_ RMt,.q+2 = #(RMr_,.q+_,RM_,_I.e+,).

Thenn=2",6=2"-',k,,=E p-1 _:-=E p-1 62=2,,_,__,k2,=E p-1
,=o J ' ,-o J ' ,=o J '

"'(1 () (;-:1k_=_[_ p-1 kn-k,2= p-1 ,andk2,-k22= . Suppose thatp<2q+3.
_,,0 J ' q + -

Then kn - k,_ >_ k2, - k=, and D_[7(C,, (72)] = 2P-q-2d2. This gives a class of two-level codes.

(1) At an example, consider the case where p = 3 and q = 0. Then n = 8, Cl = P_ =

#(P_,{0}), kn = 1, k,2 = 0, C'2 = P, = ,u(V4, P,), k2, = 4, k= = 3, Cb, = {0}, eta =

V4 o V4 = Vt and mapping f is defined as follows:

f(_i) -_ (0, O, 0,0, I, I, I, I), for 1<i<4,
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Then the code,

f(Ei) _ (1,1,I,I,0,0,0,0), for 5 < i < 8.

_(C1, C2) _ F(Cbl,/,C_) = {f(@) * v'v e Vs},

has 8 information bits, and minimum weight 2d_ with respect to the distance measure d_. This

code has an 8-section trellis diagram with 4 states as shown in Figure 1.

(2) Next consider the case where p = 4 and q - 1. Then, n = 16, C1 = RM4,1 = _(RM3,1, P_),

kl_ = 4, k_2 = 1, C2 = P_6 =/J(Vs, Ps), k2_ = 8, k_ = 7, Cbl can be chosen to be the (16, 4)

linear code generated by four binary 16-tuples represented by boolean polynomiMs 1, z2, x3,

and zt respectively, and Cb2 = V8 * Vs = Vie. The mapping f from Cb2 to RMt,2 is defined as

follows:

f(_,) a= zl(zt _9 it), for 1 < i < 16, (5.34)

where it=0for l<i<8andit=lfor9<i< 16.

(3) For four combinations of p and q, N_.c(P_[C]) for 7(C_, C_) is compared with that for

C1 • C2 in Table-1. The number of states of a trellis diagram for CI * C2 is computed based

on the number of states of a trellis diagram for RMp,q [33].

(4) Consider the case where the signal set is Ss-PSK. Let C (1) and C (2) denote 8-PSK codes,

7(P_, ,°8) * Vs and 7(RMt,1, P16) * Vie, respectively. Now, we compare these two codes with

two corresponding 8-PSK codes, C(_ ) _= P_ • Ps * Vs and C(_ ) a= RMt,I *P]e * V_6. We find

that

RtC = RtC( ) l = 1, RtC (2)1= RtC(  = 9/8,

D[C (')] = OtC_ )1 = D[C (2)] = D[C(t_ )] = 4,

N.,c.) (4) = S6,

N_,c(,)(4 ) = 240,

Nd,c_)(4 ) = 120,

Nd,c(_)(4 ) = 496.

We see that C (1) and C (2) have smaller path multiplicities than those of C-_ ) and C"(B2). Both

C (a) and C(_ ) have 8-section trellis diagrams trith 4 states, and both C O) and 6_ ) have 4-

section trellis diagrams with 16 states. These four codes are linear with respect to modulo-8

addition and C(_ ), C O) and C(s2) axe invaxiant under 45" phase shift and C (1) is invariant under

90" phase shift [35]. Performance analysis for these codes is shown in the next section. AA
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It follows from (5.26) and (5.29) that

CbX= C;Ie (Cl2oel2),

where C_I isa binary (n,ktx- kt2 - k2_ + k21) linearcode generated by {_j ofx_j: k2_ - kn <

j <_ kn - kx2}. If C12 and C21 are constructed by the p-construction, the class-2cross-over

construction can be recursivelyapplied to Cx_ * C21.

Ifinequality(5.28)is not true, then modify the construction as follows:

(1) Cb__- C_2o C_2,

(2) c,,.,_ _,(q,, c_),

where C_1 is the linear subcode of C21 generated by {02j : kx_ - kx2 < j _< k_x }.

(3) In (5.31), replace k21 - kn by kli - kl_.

5.2 Code Construction for the Case with t > 3, g = d or w and dt = 2dr-1

The two constructions stated in (A) and (B) of Section 5.1 can be combined for the case where

£ -- 3 and the following condition holds:

d3= 2_. (5.35)

Let Cbl be a binary (n, kl) linear code with minimum Harnming distance 51. Let Cb2 be

a binary (2n, ks) linear code. Let f be a linear mapping form Cb2 to the set

(v. - c_1)u {6}.

Now we define a block code of length n over the set L(= {0, 1} s) as follows:

H(Cbl, f, Cb2) _- {(Q e) f(¢)) * qo1(¢) * _o2(¢) : fl E Cbl and ¢ E Cb2 }

where the mappings _1 and _o2 are defined by (5.4) to (5.7). It is clear that

IH(c_,,, f, c_)l = 2'''+''

It can be shown that

nf H(c,,,, /, c,,.)] -- min{5,d,,_.od_,,_Cq}

> min{_.o,_,6.[C. • ItC,_M,},

(5.36)

(5.37)

(s.3s)



where 62,0 denotes the minimum Hamming distance of Cb2,o (--_ {V E C_a " f(9) = 0}) and

C' _ {(_ _ f(O)) * _o_(,_) • _(_) : _ E Cb_ and _" E Cb2 -- Cb2,O}. The class-1 or 2 cross-over

construction can be applied to this case.

We use an example to illustrate the above construction method and give a class of zero-tail

4-state Ungerboeck's TCM codes.

Example 5.2: Let gl and g_ be two binary 2n-tuples defined as follows:

g_ __a (1,0,1,0, ...... ,0),

g2 =_ (1, 0,..., O,1, 0,...,0).

Let Cb, be the trivial code {0}. Then _ = oo. Let Cb2 be the binary (2n, 2n - 2) linear code

generated by the set,

{a_ga : 0<i<n-2}U{_r'g_ • 0<i<n},

where crJq denotes the tuple obtained from _ by cyclically shifting q to the right j pla_:es.

Then _o,[Cb_] is the binary (n, n - 2) linear code generated by the set,

{o'(1,O,l,O,O,...,o) : o < i < n- 2},

and _o2[Cb2] is simply the vector space, {0, 1}". Let f be the mapping from Cb2 to {0, 1}" such

that

f(a'_,) _ a'(0, 1,0,..., o) for0 <__i < n - 2,

/(a'g2) _ O for0<i<n.

Then, it follows from (5.36) that tt(Cbl, f, Cb2), denoted C, is a linear code of length n over

L(- {0, 1} 3) with effective rate R[C] - (n- 1)/n.

Now we continue to determine J2[C]. Note that C_a,0 is the binary (2n, n) linear code

generated by the set,

For may 2n-tuple _ _ Cta - Cb_,o, _ can be expressed as

= ai_l_a + a_'l_t +"" + a_'l_t + 11
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where 1 < h_< n-2, 0_< il < i2 <"" < /h < n-2and O E Cb2.o. Then the (/1+ 1)-

th and (ih + 3)-th components of _i(_') are equal to 1. On the other hand, the (/1 + l)-

th and (ih + 3)-th components of f(#) are equal to zero. Consider the weight composition,

(to, tl, t_, t3, t4, ts, t6, tr), of the n-tuple ",_ - f(ee)._(V)._(_,). Then the following inequality,

t2 + ts > 2

holds. Since t: +t3+ts+tr>_ 1 and

I_1_- (t, + t3 + t, + t,)d, + (t_+ ts)d_+ t, d3,

we have that

#_[c']> al + 2_.

Since 51 = oo and 52,0 = 2, it follows from (5.38) that

#_[c]= 2d,.

Consider the case for which the signal set is SS-PSK. Then C is a zero-tail 4-state Ungerboeck's

8-PSK TCM code[l] with minimum squared Euclidean distance D[C] = 4(d2 = 2). The

number of codewords with minimum squared Euclidean distance from the all-zero codeword

0 is n. This code C is invariant only under 180" phase rotation [35]. Similarly, zero-tail

Ungerboeck's TCM codes with 8 or more states can be constructed [24, 34]. AA

For the last three levels of S of direct-sum type (e.g., S2cvsK with _ >_ 3), lower bounds

on the minimum Euclidean weight w tighter than those on d can be used.

Example 5.3: Suppose we want to construct an 8-PSK code C of length n = 16 with

R[C] = 1 and D[C] = d2 + 4dl. Let n = 16, Cbl = {6} and Cra = {0, 1} 32. For 1 < i < 32, let

be the binary unit 32-tuple whose i-th component is one and whose other components are

zero. Define the mapping f from C_a - {0, 1} 32 to RM4,_ as follows:

f(¢_1) _ z_(1 e z,),

f(#.i) _ is _ L iizi, forl<i_<lSorlT<i_.32,

j-I

f(_l,) "

(5.39)

(s.4o)

(s.41)
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where (ii, i2, i3, it, i5) is the standazd binary representation of i - 1. It can be shown that (1)

D[C] = D[w, C] = d2 + 4dl = 4.344, (2) Na,_(d_ + 4dl) = 36, and (3) this code has a 4-section

trellis diagram with 2s states. AA

For the case where l = 4, da = 2dl and dr = 2d3, the Gray code indexing method can

be used for the first and second levels as well as the third and fourth levels. The cross-over

construction also can be applied to this case. For i = 1 or 2, let Cu be a binary (2n, k,)

linear code with minimum FIa_nming distance 6,. Let f be the mapping from Cba to the set

(V2,, - Cbl) U {6}. Define a block code of hngth n over L = {0, 1} 4 as follows:

K(Cbl, f, Cb2) _ {_o(fi fB f(g'))* _o(_'): fi E Cbt and # E Cba},

where the mapping _o is defined by (5.8). Clearly

IK(Cb,,f, = 2''+''.

It can be shown that

D[K(Cb,, f, Cb2)] = min{t_,d,, 62,oda, D[C']}

>_ min{62,ods, _h'[Ct,, • f(Cba)]d,},

where 62,0 denotes the minimum Flamming distance of Cb2,0 (_ {_7 • Cb_ " f(_') = 0}) and

C' A_ {,,,o(O.¢ f(_')) • _o(_) • 'O.• Cl,, and q" • Cb:_ - Cb2,o}.

6. Performance Analysis

In this section we assume that the signal set S satisfies condition ($1) and that every codeword

of C is equally likely to be transmitted. Let pu be the probability of an incorrect decoding for

a block. For a codeword Q in C, let Pie(f1) be the probability of an incorrect decoding when

Q is transmitted.

For a block code C over S of length n and'an n-tuple gl over S, let C[fi] be defined as

C[tl] _ {¢ - a: ¢ • C}, (6.1)

where - denotes the component-wise subtraction. We shall only consider decoding of a code

with the following property:



(De) For two codewords fi and # in C, if there is a one-to-one correspondence between C[fl]

and C[_'] which preserves the distance measure d between two n-tuples, then

= P,o(#). (6.2)

Most of the proposed decoding algorithms have the above property. If ,9 = S (i.e., S is an

abelian additive group under addition + (e.g., S2_-psz) ) and C is linear with respect to +,

then for any O in C, C[O] = C and therefore

pC = P_,:(O), (6.3)

where 6 denotes the all zero n-tuple. For a linear code C with respect to E), the above

equality is not necessaxily true. For a zero-tail Ungerboeck's 8-PSK TCM code [1] of length

9 with the minimum squared Euclidean distance dl+ 2d2 where dl and d2 are defined by

(2.15), the number of codewords with the minimum squared Euclidean distance from codeword

O = (4, 1, 2, 0,..., 0) is 12, whereas that from the all-zero codeword 0 is 13, and simulation

result on P,c(0) and P,c(fi) by the maximum likelihood decoding for an additive white Gaussian

noise (AWGN) channel at SNR per information bit = 6 dB shows a difference beyond the upper

limit of confidence interval [34].

For a block code C over S (in general, a nonlinear code with respect to +), let Co be

defined as

Co {o I c[a] = c o

Then Co is not empty if and only if 0 E C. For S2¢.PSK, any codeword in a linear code C with

respect to E_ whose components axe 0 or 2l-1 is in Co.

[,emma 4 is useful for performance analysis of 2z-PSK code.

Lemma 4: Suppose tha_ O E C. Then the following properties hold:

(1) Co is closed under the component wise + addition.

(2) For codewords I1 and 9 in C, C[tl] = C[g'] if and only if I1- ¢ E Co.

(3) Suppose that a subset C0 of C is closed under the component wise + addition. Then

_o C_Co if and only if there is a subset of (q of C such that

{ +a:veg =adaeCl}=C. (6.4)



Proof: See Appendix D. AA

Suppose that C_ and C_ meet the conditions stated in (3) of the above lemma. Let O1(=

0), fi2,..., _ be representatives of cosets of C_ in C, where q - IcI/Ic_l. Then it follows

from (De) and (2) of Lemma 4 that for 9 in C_ and 1 _< j < q,

c[v + %]=c[%].

tIence we have that
1 q

p_ = _ P,c(%). (6.5)

Example 6.1: Consider the basic 8-PSK code C _- P_ * RM42 * P,s with R[C] = 27/32 and

O[C] = 8 [26, 34]. Let C_ and C i be defined as

C_ A P_ * RM4,1* P16,

C_ _= {(}.fi.O'a 6 (RM4,a- RM4,1)U{6}}.

Then Lemma 2 in [35] (or Lemma A in [34]) implies that C_ is closed under the component-wise

modulo-8 addition (denoted +s) and

{v +,u:v 6 c_ and a e C_} = C.

Let fi(22) and fi(32) be codewords in RM_,_ represented by boolean polynomials zlz_ and zlz_ (B

z3z, respectively. Note that C, C_ and RM4.2 are invariant under a permutation (called a

linear transformation) on the bit positions induced by an invertible linear transformation on

the binary representations of bit positions numbered 0 to 15. RM4,2 consists of 64 cosets

of RM4,1 which are partitioned into three equivalent classes under linear transformations

[31, Ch.15.2]. The first class is RM4,1 itself. The second class consists of 35 cosets whose

representatives are obtained from Q(2;) by linear transformations, and the third class consists of

28 cosets whose representatives are obtained from 1i(32)by linear transformations. Consequently

it follows from (De) and (6.5) that

1

P'"= gi {a,(a_) + _P_(a_) + 2sP,¢(a_)},

where tl, _AO.O*0, O2 _ 0.11_ 2)*0 and fh =A0,t1_2).0. C[fh], Via2] and C[tl3] have the same

number, 1240, of nearest neighbor codewords from 6, but the numbers of the second nearest
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neighbor codewords from d) in C[Q1], C[fi_] and C[Q3] are 2048, 1024 and 1024, respectively.

Simulation results on P,c(Q]), P,c(fi2) and P,c(fh) by the maximum likelihood decoding for

an AWGN channel at SNR per information bit = 4.TdB are 4.41 x 10 -3, 4.11 x 10 -3 and

4.05 x 10 -3, respectively. AA

Now we consider the maximum likelihood decoding for an AWGN channel. Let R" denote

the set of all r-tuples of real numbers. For "_ = (sl, s2,..., s,,) over S, let cy(¢) denote the

2n-tuple in R 2", represented by q, and assume that for O and ¢ E .9", d(O, V) is defined as the

squared EucMean distance between a(Q) and a(¢). For 2n-tuples i and f_' in R 2", let (f_, i')

denote the inner product of i and f_'. It follows from (2.3) and (2.22) that for Q and ¢ over .9,

d(a,_) = d(_-a,6)

- (_(_,)- o(Q),_(_) - o.C_)). (6.6)

We write IQ-vl_ford(a-_,, 0). Supposethat a codeword O in C is transmitted and f_ E R 2" is

received. Since the probability of an incorrect decoding only depends on the squared Euclidean

distances among o.(fi), _. and o.(9) for all codewords ¢ other than ft, we consider C[O] instead

of C and suppose that the all-zero n-tuple 0 in C[fi] is transmitted. Decoding is correct if

and only if

(_.- a('_), _.- o.(¢)) > (_.- o.(6), f_- o'(6)) (6.7)

for every n-tuph v in C[O] other than 0. The above inequality can be rewritten into the

following inequality:

2(o.(_)- a(6),i- o.(6))< I_1_. (6.8)

For an n-tuple _ E C[Q], let U(¢) be the set of 2n-tuples over R, _, which satisfy the inequality

(6.7) (or (6.8)) and the probability, denoted q_(V), that a received 2n-tuple _ is not in U(_)

is giwn by [36]

,.(,) =Q (_. (6.9)

where p = 2R[C]Eb/No, Eb/No denotes SNR pe.r information bits and

1 t

A subset T of C[O] - {6} is said to be C[O]-representative, if

N u(_)= N u(_). (6.10)
9t7 9Eqll-{O}
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Since decoding is correct if and only if a received 2n-tuple f_ is in the set of the right-hand

side of (6.10), we have the following upper bound on P,_(ti):

P,,(O) <___ q_(V), (6.11)
VET

where T is a C[Q]-representative set. For a distance measure g, a finite subset T of S"

and a positive real number 6, let Ng.r(6) denote the number of n-tuples 9 in T such that

Mg(= _ g('_, 0)) -- 6, and let Ag, T be the set of positive real number 6 such that Ng,r(/_) _ 0.

Then it follows from (6.9) and (6.11) that we have the following union bound on P,_(Q):

P,=(t_)< _ N,,T(6)Q(_, (6.12)

6E_¢,T \,.-!

where T is a C[fi]-representative set. In particular, if C is linear with respect to +, then it

follows from (6.3) and (6.12) that

pi_ _ ___ Nd, T(6)Q (_ , (6.13)
6E_,T

where T is a C-representative set. Since a distance measure satisfies (2.17) and the function

Q(.) is monotonically decreasing, we can replace d by any distance measure in the right-hand

If C is linear with respect to _, then we have the following upper bound onside of (6.12).

Pie:

(6.14)

_fEAw,T \,.,!

where w denotes the Euclidean weight measure defined by (4.4) and T is either C or the

union of C[fij]-representative sets over all fii in (6.5). Lemma 5 can be used for choosing a

representative set.

Lemma 5: For V, _f and _g' in ,S"_, suppose that there are two nonnegative real numbers 71,

such that

Then it holds that

a(¢') - c,(O)= -y1(a(_)- c,(O))+ _(_,(v') - _(0)),

Iv"l,> _lvl, + _1¢1,.

v(+) n u(¢) c_v(,').

Proof: Inequality (6.17) follows from the definition of U(V).

(6.1s)

(6.16)

(6.1T)

AA
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If wechoose¢7 and _ as members of a representative set, then Lemma 5 shows that we don't

need to choose #I' as a member. If ,_ is a 2-dimensional lattice, this lemma can be easily

applied.

Example 6.2: Consider the basic 4-level code, P_ * RMa,I * Ps * Vs (= _o[RM,,1] * _[P16])

over SlS-qASK, and assume that the squared signal configuration is used and the signal point

labeled with 0000 is nearest to the center of the 2-dimensional signal set. Then the following

upper bound on P_(O) is derived.

P_:(6) _< 3960Q (4_ + 14336Q (4_/_ . (6.18)

AA

Even for $2,-esz, the above lemma is useful. Let sj, s_ and s_ denote the j-th components

of ¢, _ and ¢_ over S2t.psK respectively. There are two simple cases for which the above

conditions (6.15) and (6.16) hold [22],

'=0or '=2 t-I (mod2t):(i) For each j, either s.1 • sj s_ + sj

I 11 I I! _ -- 1 •Let 3'1 = _ = 1. If s i • s_ = 0, then s i = s,i + s i, and otherwise, sj =

(i.i) Each component of ¢ is 0 or 2 t-l, and there is an s E S2_.PSK such that 0 < s < 2 t-2 and

s_ is s or 2t - s for every j with s_ _ O:

( ) ' (or 2' s), then s, -sLet71=cos 21-tss" and3_=l. Ifsj=2 t-1 ands_=s - #=2 t-1

(or 2t-1 + s), and otherwise, s_ = s;.

By using these results, relatively small representative sets can be chosen to improve the upper

bound (6.13) or (6.14) for several 8-PSK or 16-PSK codes [29, 35]. As examples, the following

upper bounds on p/c for C'_ ) and C (1) defined in part (4) of Example 5.1 are derived :

,_ < 120Q (V/_) + 128Q (_/4(2- V/2)p)

+1024Q (_/(8- 3V_)p), for 6_ ), (6.19)

P/e

forc(1). (6.20)

AA
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Let P_ denote an upper bound on p,_, e.g., the fight-hand sides of the above expressions.

Let Pi_, denote the simulation result on p_:. We use both P,, and P_:., as measures of error

performance of a block modulation code. Figures 2, 3 and 4 give the error performances of 8-

PSK modulation codes C O), C (2) defined in part (4) of Example 5.1, and 16-PSK modulation

code P_. RM_._* I;'32* V32 which is linear with respect to modulo- 16 addition [35] respectively.

These error performances are compared with those of uncoded QPSK systems for transmitting

the same number of information bits. From Figures 2 and 3, we see that the difference between

P,_ and P_,, is small for SNR greater than 6 dB per information bit. Table 2 (or 3) compares

the error performances of C (1) and C<_ ) (or C _2) and C_)), and Table 4 compares those of C (1)

and the zero-tail 4-state Ungerboeck's TCM code of length 9 given in Example 5.2. Table 5

compares those of 16-PSK codes, P_ • 7( RM5.2,1:'32) * V_a and P_ • RMs,a * Pn * V32, both of

which have rate 5/4, minimum squared Euclidean distance 4 and trellis diagrams of states 28.

Figure 5 compares the error performances of the 16-QASK code given in Example 6.2

with that of an uncoded 8-AMPM. The error performance of this 16-QASK code is measured

by two bit-error probabilities, _, and p,.. as follows:

( c0 )1 -/',, ,

p,., = 1 - 1 -P_:.,

where /:'i,(0) is the value of the right-hand side of (6.18) and Pi¢,,(0) denotes simulation

result on Pie(l}). The error performance of the uncoded 8-AMPM is given by the bit-error

probability, p_., (simulation result).

7. Conclusion

In this paper, we have investigated the powerful multi-level technique for constructing band-

width efficient block modulation codes. A general formulation for a multi-level block mod-

ulation code in terms of its component codes over substrings of labeling symbols has been

presented. Lower bounds on the minimum distance of multi-level block modulation codes

have been derived. Several specific methods for constructing component codes of a multi-

level block modulation codes have been proposed. These methods provide interdependency

between consecutive labelings of component codes. As a result, there is an inter-relationship



among the component codes of a multi-level block modulation code. This is a contrast to the

construction of a basic multi-level block modulation code in which there is no interdependency

among the component codes. A multi-level block modulation code with proper interdepen-

dency among its component codes has better error performance than its corresponding basic

multi-level code.

We have also studied the linear structure of multi-level block modulation codes. Detail

weight distribution of a linear multi-level modulation code and its enumeration have been

discussed. Finally, error performance of block modulation codes has been analyzed for an

AWGN channel based on a soft-decision maximum likelihood decoding. Error probabilities of

some multi-level block modulation codes have been evaluated based on their Euclidean weight

distributions and simulation results.
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Appendix A

Proof of Lemma I:

Let 9 = (vl, v_,..., v,) and 9' = (v_, v[,..., v') be two different codewords in C.

can express 9 and _ as the following forms:

Then we

9 = _,(I). 9(_).... , _,{,n),

9' = 9 K1).9 K_)*'-'*9 K'_),

where 9(0 and 9'(i) are codewords in Ci and

90) = (vl,, v2i,..., v,,), %i E L (i),

¢_') (v'.,' ' ' L_>-" U2i _ • • • y Vni)_ Uli E

vj = vjlvj2 " " vj,.,,,

I I I I

Vj -" VjIV_2 • • - _J.tm_

with 1 < i < m and 1 < j < n. Let h denote the first suffix such that

9 (h} _ 9 00.

Since vii = v_i for 1 < i < h and 1 < j < n, it follows from (3.6) that

l , l (h)_ l
oL(v,, v_) = gL(vj_v,_.., v,,, vj_v_2.., v_._)>_oL tv_h,v_h).

From (2.22) and (2.23) we have that

9,.(9,¢) _>g_")(_,_"_,,_°°)>_n[g_,,_,c,,].

For gr. = _, consider the case where ¢i) = 940 for i # h. It follows from (2.18)1 (2.19) and

(3.6) that _dr:(9 , 9') = _d(_)(9 (h), 9'(h)). [[ence D[._ ), CA] _> Did_z, G"].

AA
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Proof of Lemma 2:

(1) It follows from (2.3) and (2.11) that for al...aj-l%aj+l...at and al"" a,-la'ja'j+l

inL

. . . al t

t !
dr.(a1.., aj_la.Ta3+ l . . . at, al " " aj-laia3+l " " a_)

= d(b, +... + b,_l + b, + b,+l+... + bt,bl +... + b,_l+ b_+ e,+l+... + V,)

= _(b, + b,+l+... + b,,b, + b',+_+... + b_), (A.1)

where bh = Ah(ah) for 1 < h < l and b_, = Ah(a_) for j < h < t. Equation (3.12) follows

from (2.10), (3.6) and (A.1), and equation (3.13) follows from (3.6) and (A.1).

(2) Let ¢J) be a codewords in C a for 1 <_ j _< m and _0 be a codeword in (7, different from

_0. Then it follows from (2.22), (3.12), (3.13) and (A.1) that

Equations (2.23) and (A.2)imply that D[d(_ ), Ci] > D[C] for 1 < i < m.

follows from Lemma 1. Similarly, (3.15) is shown.

(3) Since IB, I = IL, I = 2, it follows from (2.12) and (3.12) that for a # a' in L,,

d(_)(a, a') = di.

(A.2)

Then (3.14)

(A.3)

From (2.22), (2.23) and (A.3),

c,]=

Equations (3.14) and (A.4)imply (3.16).

(A.4)

&A
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Appendix B

Proof of Lemma 3

For n/2-ruple _ = (vz, v2,..-, v./2), let f'(_) be defined by

kzl -k2_

f'(9) _- _ (1_,, _)fh,- (B.1)
iffil

Then, for n/2-tuples _ and _,', f(_o_) = f'(_')of'(_). Let 9 be a codeword of C2z. If and

only if 9 E Cry, that is, _" is orthogonal to every codeword of C A - C_, then

f'(9) = 6. (B.2)

Let C_ denote the linear subcode of Cil generated by {fi,j • I _< j <_ k2z - k22}. Then it

foUowsf_om(B.2) that/' is a one-to-onemappingfromC_'_onto CI'_-

Proof of (1)

For a nonzero codeword _¢ in "y(C_,C2) (= F(Cbl, f, Cbu)), "_ can be expressed as

W,=(_@fi_)*_, for/=l and2,

- n t _ u _ u t tt
where u_ E C n, _, E C2z, fil = f'{eea) 6 Cll and Q2 = f'(ftz) E C u. Since C H f'l C n = {1}},

-' = = -' -' 61/2, and if ¢',= -' 0. If fi, (9 _ l}, then [ta, _ u,[_ > _t 1},@ u, 0 if and only if ti_ u, ui _

then J_i[_ >_ 6_/2. There are three cases to be considered.

(1) Suppose that tii @ u_ _ l} for / = 1 and 2. Then,

I'k_ _>la, • _,lsdz + Ita_• _lsda >_ ,_xd_.

(2) Suppose that fi, • Q_ - (} and fi_ • Q_ # 6. Then fiz - fi_ - 0, and I_ • _ls >_$J2.

Since tl_ = 0, tl[ _ c_a. If fta = 0, then la_l_ > a_and I*k > axd,. Zfaa # _, it fonows

from(B.Z)that v_ # 0 and thereforeI_l_ > 5_/2. Hence I*k > _d_/2 + 5_dJ2.

(3) Suppose that fit @ u_ = Qa (9 f_ = 0. Then fiz = fi_ = fi_ = f_ = 0- If #t # 0 and

% _t 0, then I_,k > (l_l_ + Iv_l_)d_> 6d_. _f_ = O,then_ # 0. It foUow_from

(B.2) that _'z ¢ C_ and lgz Is _> _. Hence I@[t >_ _da. Thus inequality (5.32) holds.
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Let _'1 be a codeword of Ha_nming weight 62 in C_. Then .f(_,oO) = 0oO and If(g'lo0) •

AA

The proof above implies (2) of the lemma.

Proof of (3)

For a linear block code C of length n with respect to @ and a positive integer t such that

1 < t < n, let C t (or Cp) denote the set of those codewords of G whose first t (or last n - t)

components are all-zero. Let C and C' denote C, * Ca and 7(C1,C2) respectively, where

Ci = #(Ci,, Cia). We show that

IC;I> Ic,I, (B.3)

IC l> IC,,I. (B.4)

Then the claim is proved [15, Appendix]. From the symmetry shown by (5.26), it is sufficient

to consider t such that 1 < t _< n/2.

Let a codeword * in C be expressed as

_" = (_',lo(q,'n 6) *,a)) * ('2,o('21 6) *a_)) (B.5)

where *ij E C,j for i and j in {1, 2}.

(1) Suppose that *,1 6) *la = _21 E) *n = 0. Then _11 E C,2 and _tal E Caa. Since

_Vllo0 E Cbl, ",i'aloO E Cb2 and /(_talo0) = 0o_}, w is also in CL That is, inequality

(B.3) holds.

(2) Suppose that _" E C t. Then _'u can be expressed as

• ,I= _' _ u", (B.6)

where _t' E C_, and O" E C_',. Since f' is a one-to-one mapping from C_'_ onto C_'_, there

is ,_ in Ca, such that a" = f'(_'). From (B.2),

f'(g"6)_'_) = f'(¢#)= a". (B.7)

Sincet1'o(e'6)"12)E 0_iand "21o(e6)_'n)E C_, itfollowsfrom(B.6)and (B.7)that

(¢_11o(a ' 6) *l_ 6) f(_21)_) * (*_lo(e 6) "_)), denoted ",_', is in C}. Since different _t'

results from different *, inequality (B.4) holds.
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Appendix (2

A Trellis Dial;ram for the Second Code Given in Table 1

For 1 < j <__8, the j-th input symbol is a_b_ where aj is the least significant bit. Let (A_, Bj)

be the state of the overall encoder after the j-th symbol, a.ibj, is received. Assume that the

initial state is (A0, B0)= (0,0). The state transition from (Aj-I,Bj-1)to (A,,Bj) when j-th

symbol %b_ is received is defined as follows:

(1) A1 = al, B1 = bl.

(2) For 2 < j < 4, if aj = Aj-1, then A i = A__t and Bj = B___ _ b,, and otherwise, the

state transition is not defined.

(3) For 5 <_ j < 8, if a_ = Bj-1, then A_ = Aj-1 $ bj and Bj = Bj-t and otherwise, the state

transition is not defined.

An input sequence is accepted as a code sequence if and only if every state transition is defined

and As = 0.
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Appendix D

Proof of Lemma 4:

(D) Suppose that for an n-tuph a over S, C[f_] = C. Since 0 E C, -a E C. Therefore, for

any nonnegative integer h, -ha E C. Since U is finite, there is a positive integer h such

that -hfi = 0, i.e., fi = -(h - 1)ti E C. Hence Q E Co.

(1) Let vt and ¢2 be codewords in Co. Then, for any codeword ft, there is a codeword Q'

such that a - Ct = Q' and Q' - ¢2 E C. Hence ti - (Vl + ¢2) = ti' - ¢2 E C. That is,

C[Vs + %] = C and from (D), _, + % ,£ Co.

(2) Only if part: For any codeword 13' in C, there is a codeword _ in C such that ti' - 1i =

¢' - V. Hence Ii'- (li - v) E C. That is, C[ti - v] = C and from (D), Q - ¢ E Co.

If part: [f Ii - g, E Co, then for any ti t in C, there is a codeword rg such that tit_ (1i _ _,) =

9',i.e., ti'- ti = _- ?. That is, C[ti] _CC[9]. Since IC[ti]J = IC[#][, C[ti] = C[g,].

(3) If part : For any fl in C, there exist v' in C_ and Q' in C_ such that 1i = W + ti'. Let V

be a codeword in C_. Then we have that

ti-g-=_Tt-ft+ti I. (D.1)

Since C_ is finite and closed under the component wise + addition, -_" E C_ and therefore,

V' - ¢ E C_. It follows from (6.4) and (D. 1) that ti - ¢ E C. That is, C[¢] = C and

therefore, V E Co.

Only if part: For any g, in C_, -g" is also in C_. Then for any ti in C, ti-(-¢) = ti+g' E C.

Then C can be taken as C_.
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Table 1:

Some Comparisons of 7(U1,02) with U1 * U2

Definition

of

C

P# * Ps 8

RM_,I * 1:'16 16

7(RM,.1, Pt,) 16

RMs.2 * P3_ 32

7(RM_.2, Pz2) 32

RM_,I * RMs,3 32

_( RMs,1, RM_,3) 32

p_[Cl/¢

The number of

states of

a trellis diagram

4 (8 section)8 2

8 2 4 (8 section)

20 2 16 (4 section)

20 2 16 (4 section)

28

12

120

56

47 2 128 (4 section) 496

47 2 128 (4 section) 240

32 4 256 (4 section) 1240

32 4 256 (4 section) 280



Table 2:

Comparison of the Error Performances between the Codes,

C_ ) and C(1), Given in Example S.1

SNR per C"(_) U (1)

information Simulation Upper bound Simulation Upper bound

bit (dB) result P_¢,, P,c result P_,, P.c

6.0 4.17E,-03 5.09E-03 3.60E-03 4.52F_,-03

8.0 3.27F,-05 3.50E-05 2.60E-05 2.74E-05

10.0 1.66F,-08 1.07F_,-08



Table 3:

Comparisonof the Error Performancesbetween the Codes,

C(_ ) and C (2), Given in Example 5.1

SNR per C(2 ) C O)

information Simulation Upper bound Simulation Upper bound

bit (dB) result P/_,, P_, result P_,. P,,

6.08 8.05F_,-03 1.33E-02 7.38F_,-03 1.26F_,-02

8.08 2.94F_,-05 3.03F_,-05 2.41E-05 2.53F_,-05

10.08 3.68E-09 2.43E-09



Table 4:

Comparisonof the Error Performancesbetween C (l) and

the Zero-tail 4-state Ungerboeck's 8-PSK TCM Code of Length 9

SNR per

information

bit (dB)

8.0

10.0

12.0

The zero-tail ,l-state

Ungerboeck's codeC 0 )

Simulation Upper bound Simulation Upper bound

result Pie,, P,_ result P_, Pic

2.60E-05 2.74E.05 1.76E-05 1.80E-05

1.07E-08 1.45F_,-08

5.88E-14 3.07E-13



Table5:

Comparisonof the Error Performances between 16-PSK Codes

P_ * RMs,2 * Ps2 * V32 and P_ • 7(RMs,2, P32) * V32

SNR per P_ • RMs,_ • P32 * V32 P_ * 7(RMs,2, P32) * V3_

information Simulation Upper bound Simulation Upper bound

bit (dB) result P,,.., Pi, result Pi_,(6) P,,:(O)

7.02 2.64F_,-03 4.67F_,-03 2.24F_,-03 4.33F_,-03

8.02 8.15F_,-05 6.43E--05

9.02 6.93E-07 4.95E,-07

10.02 2.22E-09 1.45E-09
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Fig. 2 Error performance of the 4--state 8-PSK code UI) given in Example 5.1
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